High Density Polypropylene (HDPP)
High density polypropylene (HDPP), also called polypropene is a thermoplastic polymer, made up of the monomer, propylene. It can be manufactured as a dense product that has high resistance to chemical cleansers but also relatively light and flexible with a low melting point between 130 and 170 degrees C.
Polypropylene (PP) is a commonly used material for packaging, automotive parts and textiles, whilst HDPP is commonly used to manufacture pipes as an alternative to high density polyethylene (HDPE). HDPE is naturally greater resistance to UV but HDPP can contain additives that increases its UV stability. HDPP can become more brittle at lower temperatures and poorer resistance to oils than HDPE.
Polypropylene (PP) including High density polypropylene (HDPP) comes under category 5 in the Resin Identification Code (RIC) system for plastic classification, where as high density polyethylene (HDPE) falls in category 2. To differentiate between the two under a burn test ,HDPP tends to smell of petroleum whilst HDPE smells more of melted candlewax.
[edit] Related articles on Designing Buildings
- Adhesives.
- Construction plastics market.
- ETFE.
- High density polyethylene (HDPE).
- Glass reinforced plastic GRP.
- Plasticisation.
- Plastic in construction.
- Plastic and recycling.
- Polyethylene.
- Polymers.
- Recyclable construction materials.
- Rubber.
- Thermoplastic materials in buildings.
- Transparent insulation materials.
- Types of plastic.
- Weatherboarding.
Featured articles and news
What they are, how they work and why they are popular in many countries.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.
























